LDLRAD3 is a receptor for Venezuelan equine encephalitis virus – Nature.com

Last Updated on November 18, 2020 by

  • 1.

    Sharma, A. & Knollmann-Ritschel, B. Current understanding of the molecular basis of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 11, 164 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Weaver, S. C. & Barrett, A. D. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2, 789–801 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Aguilar, P. V. et al. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol. 6, 721–740 (2011).

    Article 

    Google Scholar
     

  • 4.

    Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Basore, K. et al. Cryo-EM structure of Chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737.e16 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Malygin, A. A. et al. C-terminal fragment of human laminin-binding protein contains a receptor domain for Venezuelan equine encephalitis and tick-borne encephalitis viruses. Biochemistry (Mosc) 74, 1328–1336 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ludwig, G. V., Kondig, J. P. & Smith, J. F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 70, 5592–5599 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Klimstra, W. B., Nangle, E. M., Smith, M. S., Yurochko, A. D. & Ryman, K. D. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J. Virol. 77, 12022–12032 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bernard, K. A., Klimstra, W. B. & Johnston, R. E. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276, 93–103 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Yin, J., Gardner, C. L., Burke, C. W., Ryman, K. D. & Klimstra, W. B. Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J. Virol. 83, 10036–10047 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Ryman, K. D. et al. Heparan sulfate binding can contribute to the neurovirulence of neuroadapted and nonneuroadapted Sindbis viruses. J. Virol. 81, 3563–3573 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Gardner, C. L., Ebel, G. D., Ryman, K. D. & Klimstra, W. B. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc. Natl Acad. Sci. USA 108, 16026–16031 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Tanaka, A. et al. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for Chikungunya virus infection. J. Virol. 91, e00432-17 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 

    Google Scholar
     

  • 15.

    Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 9, e1000582 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Ranganathan, S. et al. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J. Neurosci. 31, 10836–10846 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Noyes, N. C., Hampton, B., Migliorini, M. & Strickland, D. K. Regulation of itch and Nedd4 E3 ligase activity and degradation by LRAD3. Biochemistry 55, 1204–1213 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Smith, S. A. et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against Chikungunya virus. Cell Host Microbe 18, 86–95 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Ryman, K. D., Meier, K. C., Gardner, C. L., Adegboyega, P. A. & Klimstra, W. B. Non-pathogenic Sindbis virus causes hemorrhagic fever in the absence of alpha/beta and gamma interferons. Virology 368, 273–285 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Sun, C., Gardner, C. L., Watson, A. M., Ryman, K. D. & Klimstra, W. B. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J. Virol. 88, 2035–2046 (2014).

    Article 

    Google Scholar
     

  • 21.

    Davis, N. L., Willis, L. V., Smith, J. F. & Johnston, R. E. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171, 189–204 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Kinney, R. M. et al. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. J. Virol. 67, 1269–1277 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Anishchenko, M. et al. Generation and characterization of closely related epizootic and enzootic infectious cDNA clones for studying interferon sensitivity and emergence mechanisms of Venezuelan equine encephalitis virus. J. Virol. 78, 1–8 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Kim, A. S. et al. Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat. Microbiol. 4, 187–197 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Lubman, O. Y. et al. Rodent herpesvirus Peru encodes a secreted chemokine decoy receptor. J. Virol. 88, 538–546 (2014).

    Article 

    Google Scholar
     

  • 26.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Willnow, T. E. et al. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J. 15, 2632–2639 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ko, S. Y. et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 11, eaav3113 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Pal, P. et al. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog. 9, e1003312 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Leave a Comment

    ×

    Table of Contents